1. Go to this page and download the library: Download rubix/har library. Choose the download type require.
2. Extract the ZIP file and open the index.php.
3. Add this code to the index.php.
<?php
require_once('vendor/autoload.php');
/* Start to develop here. Best regards https://php-download.com/ */
rubix / har example snippets
use Rubix\ML\Datasets\Labeled;
use Rubix\ML\Extractors\NDJSON;
$dataset = Labeled::fromIterator(new NDJSON('train.ndjson'));
use Rubix\ML\PersistentModel;
use Rubix\ML\Pipeline;
use Rubix\ML\Transformers\GaussianRandomProjector;
use Rubix\ML\Transformers\ZScaleStandardizer;
use Rubix\ML\Classifiers\SoftmaxClassifier;
use Rubix\ML\NeuralNet\Optimizers\Momentum;
use Rubix\ML\Persisters\Filesystem;
$estimator = new PersistentModel(
new Pipeline([
new GaussianRandomProjector(110),
new ZScaleStandardizer(),
], new SoftmaxClassifier(256, new Momentum(0.001))),
new Filesystem('har.rbx')
);
use Rubix\ML\Loggers\Screen;
$estimator->setLogger(new Screen());
$estimator->train($dataset);
use Rubix\ML\Extractors\CSV;
$extractor = new CSV('progress.csv', true);
$extractor->export($estimator->steps());
$estimator->save();
use Rubix\ML\Datasets\Labeled;
use Rubix\ML\Extractors\NDJSON;
$dataset = Labeled::fromIterator(new NDJSON('test.ndjson'));
use Rubix\ML\PersistentModel;
use Rubix\ML\Persisters\Filesystem;
$estimator = PersistentModel::load(new Filesystem('har.rbx'));
$predictions = $estimator->predict($dataset);
use Rubix\ML\CrossValidation\Reports\AggregateReport;
use Rubix\ML\CrossValidation\Reports\MulticlassBreakdown;
use Rubix\ML\CrossValidation\Reports\ConfusionMatrix;
$report = new AggregateReport([
new MulticlassBreakdown(),
new ConfusionMatrix(),
]);
use Rubix\ML\Persisters\Filesystem;
$results = $report->generate($predictions, $dataset->labels());
echo $results;
$results->toJSON()->saveTo(new Filesystem('report.json'));
$ php validate.php
sh
$ php train.php
Loading please wait ...
Before you can download the PHP files, the dependencies should be resolved. This can take some minutes. Please be patient.