1. Go to this page and download the library: Download rubix/churn library. Choose the download type require.
2. Extract the ZIP file and open the index.php.
3. Add this code to the index.php.
<?php
require_once('vendor/autoload.php');
/* Start to develop here. Best regards https://php-download.com/ */
use Rubix\ML\Classifiers\NaiveBayes;
$estimator = new NaiveBayes([
"Yes" => 0.05,
"No" => 0.95,
]);
use Rubix\ML\Pipeline;
use Rubix\ML\Transformers\NumericStringConverter;
use Rubix\ML\Transformers\IntervalDiscretizer;
$estimator = new Pipeline([
new NumericStringConverter(),
new IntervalDiscretizer(3, true),
], $estimator);
$estimator->train($training);
var_dump($estimator->trained());
$predictions = $estimator->predict($testing);
print_r($predictions);
use Rubix\ML\CrossValidation\Reports\AggregateReport;
use Rubix\ML\CrossValidation\Reports\ConfusionMatrix;
use Rubix\ML\CrossValidation\Reports\MulticlassBreakdown;
$reportGenerator = new AggregateReport([
new MulticlassBreakdown(),
new ConfusionMatrix(),
]);
use Rubix\ML\Persisters\Filesystem;
$report->toJSON()->saveTo(new Filesystem('report.json'));
use Rubix\ML\PersistentModel;
use Rubix\ML\Persisters\Filesystem;
$estimator = new PersistentModel($estimator, new Filesystem('model.rbx'));
$estimator->save();
use Rubix\ML\Extractors\SqlTable;
use PDO;
$connection = new PDO('sqlite:database.sqlite');
$extractor = new SqlTable($connection, 'customers');
$extractor = new LimitIterator($extractor->getIterator(), 0, 100);