1. Go to this page and download the library: Download mcordingley/regression library. Choose the download type require.
2. Extract the ZIP file and open the index.php.
3. Add this code to the index.php.
<?php
require_once('vendor/autoload.php');
/* Start to develop here. Best regards https://php-download.com/ */
mcordingley / regression example snippets
use MCordingley\Regression\Algorithm\LeastSquares;
use MCordingley\Regression\Observations;
use MCordingley\Regression\Predictor\Linear;
$observations = new Observations;
// Load the data
foreach ($data as $datum) {
// Note addition of a constant for the first feature.
$observations->add(array_merge([1.0], $datum->features), $datum->outcome);
}
$algorithm = new LeastSquares;
$coefficients = $algorithm->regress($observations);
$predictor = new Linear($coefficients);
$predictedOutcome = $predictor->predict(array_merge([1.0], $hypotheticalFeatures));
use MCordingley\Regression\StatisticsGatherer\Linear;
$gatherer = new Linear($observations, $coefficients, $predictor);
$gatherer->getFStatistic(); // etc.
use MCordingley\Regression\Algorithm\GradientDescent\Batch;
use MCordingley\Regression\Algorithm\GradientDescent\Schedule\Adam;
use MCordingley\Regression\Algorithm\GradientDescent\Gradient\Logistic as LogisticGradient;
use MCordingley\Regression\Algorithm\GradientDescent\StoppingCriteria\GradientNorm;
use MCordingley\Regression\Observations;
use MCordingley\Regression\Predictor\Logistic as LogisticPredictor;
$algorithm = new Batch(new LogisticGradient, new Adam, new GradientNorm);
$coefficients = $algorithm->regress(Observations::fromArray($features, $outcomes));
$predictor = new LogisticPredictor($coefficients);
$predictedOutcomeProbability = $predictor->predict($novelFeatures);
Loading please wait ...
Before you can download the PHP files, the dependencies should be resolved. This can take some minutes. Please be patient.