PHP code example of luminsports / levenberg-marquardt
1. Go to this page and download the library: Download luminsports/levenberg-marquardt library. Choose the download type require.
2. Extract the ZIP file and open the index.php.
3. Add this code to the index.php.
<?php
require_once('vendor/autoload.php');
/* Start to develop here. Best regards https://php-download.com/ */
luminsports / levenberg-marquardt example snippets
use LuminSports\LevenbergMarquardt\LevenbergMarquardt;
// Set up the curve-fitting model
$model = (new LevenbergMarquardt)
// the parameters and returns a function with the independent variable as a parameter
->setParameterizedFunction(function ($criticalPower, $pMax, $tau) {
return fn (float $t) => ($pMax - $criticalPower) * exp(-$t / $tau) + $criticalPower;
})
// array of initial parameter values
->setInitialValues([
'criticalPower' => $relative ? 4 : 300,
'wPrime' => $relative ? 285 : 20000,
'tau' => $relative ? 4 : 300,
])
// minimum allowed values for parameters
->setMinValues([0, 0, 0])
// maximum allowed values for parameters
->setMaxValues([1000, 600, 300])
// Levenberg-Marquardt parameter, small values of the damping parameter λ result in a Gauss-Newton update and large values of λ result in a gradient descent update (default 1E-2)
->setDamping(1.5)
// factor to reduce the damping (Levenberg-Marquardt parameter) when there is not an improvement when updating parameters (default: 9)
->setDampingStepDown(9)
// factor to increase the damping (Levenberg-Marquardt parameter) when there is an improvement when updating parameters (default: 11)
->setDampingStepUp(11)
// the threshold to define an improvement through an update of parameters (default: 1E-3)
->setImprovementThreshold(1E-3)
// the step size to approximate the jacobian matrix (default: 10E-2)
->setGradientDifference(10E-2)
// if true the jacobian matrix is approximated by central differences otherwise by forward differences (default: false)
->setCentralDifference(true)
// maximum of allowed iterations (default: 100)
->setMaxIterations(1000)
// minimum uncertainty allowed for each point (default: 10E-3)
->setErrorTolerance(10E-3);
$curve = $model->setXValues($knownXValues)
->setYValues($knownYValues)
->getCurve();
// outputs the parameters that formed the best fitting curve
$curve->getParameters();
// outputs the number of iterations it took to reach this solution
$curve->getIterations();
// the sum of the weighted squares of the errors (or weighted residuals) between the known y-coordinates and the curve-fit function.
$curve->getError();
// returns an array of points for the provided x-values, with the predicted y-values
$model->predict($xValuesToPredictFor);
Loading please wait ...
Before you can download the PHP files, the dependencies should be resolved. This can take some minutes. Please be patient.