PHP code example of emilklindt / laravel-marker-clusterer
1. Go to this page and download the library: Download emilklindt/laravel-marker-clusterer library. Choose the download type require.
2. Extract the ZIP file and open the index.php.
3. Add this code to the index.php.
<?php
require_once('vendor/autoload.php');
/* Start to develop here. Best regards https://php-download.com/ */
emilklindt / laravel-marker-clusterer example snippets
return [
/*
|--------------------------------------------------------------------------
| Default Clusterer
|--------------------------------------------------------------------------
|
| The default clustering method used when using the DefaultClusterer class
| ------------------------------------------------------
|
| The default formula for calculating distance from one coordinate to
| another. Possible values are constants of the DistanceFormula enum.
|
*/
'default_distance_formula' => \EmilKlindt\MarkerClusterer\Enums\DistanceFormula::MANHATTAN,
/*
|--------------------------------------------------------------------------
| K-means Clustering
|--------------------------------------------------------------------------
|
| K-means algorithm identifies k number of centroids, and then allocates
| every data point to the nearest cluster.
|
*/
'k_means' => [
/*
|--------------------------------------------------------------------------
| Default Maximum Iterations
|--------------------------------------------------------------------------
|
| The default number of maximum iterations of clustering, for example used
| in K-means clustering, where clustering is repeated untill either reaching
| convergence (no further changes) or the maximum number of iterations.
|
*/
'default_maximum_iterations' => 10,
/*
|--------------------------------------------------------------------------
| Default Maximum Convergence Distance
|--------------------------------------------------------------------------
|
| The maximum distance between iterations to count a cluster as converged,
| meaning that no further iteration is necessary. A higher value can provide
| better performance, due to the need of doing less iterations. A lower value
| will ensure that a cluster has actually converged.
|
*/
'default_convergence_maximum' => 100.0,
/*
|--------------------------------------------------------------------------
| Default Maximum Samples
|--------------------------------------------------------------------------
|
| The default number of maximum samples of clustering, for example used
| in K-means clustering, where the specified number of samples are run
| to achieve the lowest variance between the centroids.
|
| This differs from maximum iterations in that, iterations are executed
| on the same set of initially random centroids. Each sample instantiates
| a new set of centroids to iteratively optimize, untill maximum number
| of iterations or convergence is reached.
|
*/
'default_maximum_samples' => 10,
],
/*
|--------------------------------------------------------------------------
| Density Based Spatial Clusterer (DBSCAN)
|--------------------------------------------------------------------------
|
| Finds core samples of high density and expands clusters from them.
|
*/
'dbscan' => [
/*
|--------------------------------------------------------------------------
| Default Include Noise
|--------------------------------------------------------------------------
|
| Whether to
use League\Geotools\Coordinate\Coordinate;
use EmilKlindt\MarkerClusterer\Interfaces\Clusterable;
class Car extends Model implements Clusterable
{
public function getClusterableCoordinate(): Coordinate
{
return new Coordinate([
$this->lat,
$this->lng
]);
}
}