Libraries tagged by equal
sebastian/comparator
725417679 Downloads
Provides the functionality to compare PHP values for equality
icecave/parity
3659467 Downloads
A customizable deep comparison library.
vanderlee/php-stable-sort-functions
495722 Downloads
Class of stable sort methods. Equal values remain in the original order. Only different values are sorted.
sarciszewski/php-future
1515656 Downloads
Polyfill new (5.6+) features into old (5.4+) versions of PHP
indigophp/hash-compat
924422 Downloads
Backports hash_* functionality to older PHP versions
traviscarden/behat-table-comparison
2451304 Downloads
Provides an equality assertion for comparing Behat TableNode tables.
orklah/psalm-strict-equality
79067 Downloads
Automatically change == into === when safe
marartner/psalm-strict-equality
62716 Downloads
Psalm plugin to enforce strict equality
killov/phpstan-banned-double-equals
24051 Downloads
Extra strict equals for PHPStan
realityking/hash_equals
65059 Downloads
Provides functionality for hash_equals() to projects using PHP earlier than version 5.6.
inda-hr/php_sdk
755 Downloads
# Introduction **INDA (INtelligent Data Analysis)** is an [Intervieweb](https://www.intervieweb.it/hrm/) AI solution provided as a RESTful API. The INDA pricing model is *credits-based*, which means that a certain number of credits is associated to each API request. Hence, users have to purchase a certain amount of credits (established according to their needs) which will be reduced at each API call. INDA accepts and processes a user's request only if their credits quota is grater than - or, at least, equal to - the number of credits required by that request. To obtain further details on the pricing, please visit our [site](https://inda.ai) or contact us. INDA HR embraces a wide range of functionalities to manage the main elements of a recruitment process: + [**candidate**](https://api.inda.ai/hr/docs/v2/#tag/Resume-Management) (hereafter also referred to as **resume** or **applicant**), or rather a person looking for a job; + [**job advertisement**](https://api.inda.ai/hr/docs/v2/#tag/JobAd-Management) (hereafter also referred to as **job ad**), which is a document that collects all the main information and details about a job vacancy; + [**application**](https://api.inda.ai/hr/docs/v2/#tag/Application-Management), that binds candidates to job ads; it is generated whenever a candidate applies for a job. Each of them has a specific set of methods that grants users the ability to create, read, update and delete the relative documents, plus some special features based on AI approaches (such as *document parsing* or *semantic search*). They can be explored in their respective sections. Data about the listed document types can be enriched by connecting them to other INDA supported entities, such as [**companies**](https://api.inda.ai/hr/docs/v2/#tag/Company-Management) and [**universities**](https://api.inda.ai/hr/docs/v2/#tag/Universities), so that recruiters may get a better and more detailed idea on the candidates' experiences and acquired skills. All the functionalities mentioned above are meant to help recruiters during the talent acquisition process, by exploiting the power of AI systems. Among the advantages a recruiter has by using this kind of systems, tackling the bias problem is surely one of the most relevant. Bias in recruitment is a serious issue that affect both recruiters and candidates, since it may cause wrong hiring decisions. As we care a lot about this problem, we are constantly working on reduce the bias in original data so that INDA results may be as fair as possible. As of now, in order to tackle the bias issue, INDA automatically ignores specific fields (such as name, gender, age and nationality) during the initial processing of each candidate data. Furthermore, we decided to let users collect data of various types, including personal or sensitive details, but we do not allow their usage if it is different from statistical purposes; our aim is to discourage recruiters from focusing on candidates' personal information, and to put their attention on the candidate's skills and abilities. We want to help recruiters to prevent any kind of bias while searching for the most valuable candidates they really need. The following documentation is addressed both to developers, in order to provide all technical details for INDA integration, and to managers, to guide them in the exploration of the implementation possibilities. The host of the API is [https://api.inda.ai/hr/v2/](https://api.inda.ai/hr/v2/). We recommend to check the API version and build (displayed near the documentation title). You can contact us at [email protected] in case of problems, suggestions, or particular needs. The search panel on the left can be used to navigate through the documentation and provides an overview of the API structure. On the right, you can find (*i*) the url of the method, (*ii*) an example of request body (if present), and (*iii*) an example of response for each response code. Finally, in the central section of each API method, you can find (*i*) a general description of the purpose of the method, (*ii*) details on parameters and request body schema (if present), and (*iii*) details on response schema, error models, and error codes.
colinmollenhour/mongodb-php-odm
5480 Downloads
MongoDb PHP ODM is a simple object wrapper for the Mongo PHP driver classes which makes using Mongo in your PHP application more like an ORM. It is designed for use with Kohana 3 but will integrate equally well with any PHP application.
sedlatschek/laravel-conditional-equals-validation
2662 Downloads
Additional rules for conditional equals validation
uptodown/equalable
19272 Downloads
An interface for checking equal objects
internetztube/craft-slug-equals-title
8459 Downloads
This plugin makes sure that the slug is always the same as the title.