Libraries tagged by data-analytics

sevenspan/segment-php-sdk

0 Favers
709 Downloads

A Segment bridge for Laravel

Go to Download


anmoroz/yii2-analytics

9 Favers
5 Downloads

Yii2 Module for data analysts

Go to Download


rvsitebuilder/marketing

0 Favers
3 Downloads

Website analytics tools that can either report or expand the result you get with Google Analytics and Google Webmaster Tools.

Go to Download


housell/urbandataanalytics

0 Favers
17 Downloads

Urban Data Analytics API integration

Go to Download


dmorenof/urbandataanalytics

0 Favers
33 Downloads

Urban Data Analytics API integration

Go to Download


smart-insight/smart-insight-ai

0 Favers
1 Downloads

SmartInsight Magento Plugin

Go to Download


data-analytic/google-ads

0 Favers
11 Downloads

Google Ads client for Data Analytic application

Go to Download


archon/dataframe

97 Favers
19096 Downloads

Archon: PHP Data Analysis Library

Go to Download


vaened/dictionary-flow

2 Favers
7785 Downloads

A library for comprehensive evaluations within a key-value data dictionary, enabling precise condition definitions and data-driven decision-making.

Go to Download


thedataist/drill-connector

11 Favers
6788 Downloads

Objects that allow you to programmatically connect to Apache Drill.

Go to Download


mammothphp/woollym

7 Favers
761 Downloads

WoollyM: PHP Data Analysis Library

Go to Download


jacobemerick/kmeans

13 Favers
5981 Downloads

k-means clustering implemented in PHP

Go to Download


sqonk/phext-datakit

7 Favers
145 Downloads

Datakit is a library that assists with data analysis and research. It includes classes for working with tables of data and deriving statistical information, importing those tables from file formats such as CSV, a class wrapper with statistical methods for PHP arrays, as well as memory efficient packed arrays.

Go to Download


oxil/kinintel

0 Favers
4260 Downloads

Kinintel - Open source Intelligence and data analysis framework building on kini tools

Go to Download


inda-hr/php_sdk

6 Favers
491 Downloads

# Introduction **INDA (INtelligent Data Analysis)** is an [Intervieweb](https://www.intervieweb.it/hrm/) AI solution provided as a RESTful API. The INDA pricing model is *credits-based*, which means that a certain number of credits is associated to each API request. Hence, users have to purchase a certain amount of credits (established according to their needs) which will be reduced at each API call. INDA accepts and processes a user's request only if their credits quota is grater than - or, at least, equal to - the number of credits required by that request. To obtain further details on the pricing, please visit our [site](https://inda.ai) or contact us. INDA HR embraces a wide range of functionalities to manage the main elements of a recruitment process: + [**candidate**](https://api.inda.ai/hr/docs/v2/#tag/Resume-Management) (hereafter also referred to as **resume** or **applicant**), or rather a person looking for a job; + [**job advertisement**](https://api.inda.ai/hr/docs/v2/#tag/JobAd-Management) (hereafter also referred to as **job ad**), which is a document that collects all the main information and details about a job vacancy; + [**application**](https://api.inda.ai/hr/docs/v2/#tag/Application-Management), that binds candidates to job ads; it is generated whenever a candidate applies for a job. Each of them has a specific set of methods that grants users the ability to create, read, update and delete the relative documents, plus some special features based on AI approaches (such as *document parsing* or *semantic search*). They can be explored in their respective sections. Data about the listed document types can be enriched by connecting them to other INDA supported entities, such as [**companies**](https://api.inda.ai/hr/docs/v2/#tag/Company-Management) and [**universities**](https://api.inda.ai/hr/docs/v2/#tag/Universities), so that recruiters may get a better and more detailed idea on the candidates' experiences and acquired skills. All the functionalities mentioned above are meant to help recruiters during the talent acquisition process, by exploiting the power of AI systems. Among the advantages a recruiter has by using this kind of systems, tackling the bias problem is surely one of the most relevant. Bias in recruitment is a serious issue that affect both recruiters and candidates, since it may cause wrong hiring decisions. As we care a lot about this problem, we are constantly working on reduce the bias in original data so that INDA results may be as fair as possible. As of now, in order to tackle the bias issue, INDA automatically ignores specific fields (such as name, gender, age and nationality) during the initial processing of each candidate data. Furthermore, we decided to let users collect data of various types, including personal or sensitive details, but we do not allow their usage if it is different from statistical purposes; our aim is to discourage recruiters from focusing on candidates' personal information, and to put their attention on the candidate's skills and abilities. We want to help recruiters to prevent any kind of bias while searching for the most valuable candidates they really need. The following documentation is addressed both to developers, in order to provide all technical details for INDA integration, and to managers, to guide them in the exploration of the implementation possibilities. The host of the API is [https://api.inda.ai/hr/v2/](https://api.inda.ai/hr/v2/). We recommend to check the API version and build (displayed near the documentation title). You can contact us at [email protected] in case of problems, suggestions, or particular needs. The search panel on the left can be used to navigate through the documentation and provides an overview of the API structure. On the right, you can find (*i*) the url of the method, (*ii*) an example of request body (if present), and (*iii*) an example of response for each response code. Finally, in the central section of each API method, you can find (*i*) a general description of the purpose of the method, (*ii*) details on parameters and request body schema (if present), and (*iii*) details on response schema, error models, and error codes.

Go to Download


Next >>