Libraries tagged by division
silverstripeltd/silverstripe-elemental-decisiontree-json
5112 Downloads
Adds PHP functions to the block to output the entire tree data as JSON format.
exinversa/digisigner-php-client
7639 Downloads
Hosted DigiSigner Library: Developed by DigiSigner
kullar84/hashcode-lib
3916 Downloads
hashcode library for digisigning
prinsfrank/arithmetic-operations-floating-point
10974 Downloads
Floating point math implementation for the prinsfrank/arithmetic-operations interface that provides basic arithmetic operations (addition, subtraction, power, dividing, etc...)
prinsfrank/arithmetic-operations
11006 Downloads
Interface for arithmetic operations implementation (addition, subtraction, power, dividing, etc...)
pixelgrade/nova-blocks
10 Downloads
Nova Blocks is a collection of distinctive Gutenberg blocks, committed to making your site shine like a newborn star. It is taking a design-driven approach to help you made the right decisions and showcase your content in the best shape.
php-extended/php-css-selector-interface
41263 Downloads
A library to represent css selectors for decision making trees in html documents
inda-hr/php_sdk
840 Downloads
# Introduction **INDA (INtelligent Data Analysis)** is an [Intervieweb](https://www.intervieweb.it/hrm/) AI solution provided as a RESTful API. The INDA pricing model is *credits-based*, which means that a certain number of credits is associated to each API request. Hence, users have to purchase a certain amount of credits (established according to their needs) which will be reduced at each API call. INDA accepts and processes a user's request only if their credits quota is grater than - or, at least, equal to - the number of credits required by that request. To obtain further details on the pricing, please visit our [site](https://inda.ai) or contact us. INDA HR embraces a wide range of functionalities to manage the main elements of a recruitment process: + [**candidate**](https://api.inda.ai/hr/docs/v2/#tag/Resume-Management) (hereafter also referred to as **resume** or **applicant**), or rather a person looking for a job; + [**job advertisement**](https://api.inda.ai/hr/docs/v2/#tag/JobAd-Management) (hereafter also referred to as **job ad**), which is a document that collects all the main information and details about a job vacancy; + [**application**](https://api.inda.ai/hr/docs/v2/#tag/Application-Management), that binds candidates to job ads; it is generated whenever a candidate applies for a job. Each of them has a specific set of methods that grants users the ability to create, read, update and delete the relative documents, plus some special features based on AI approaches (such as *document parsing* or *semantic search*). They can be explored in their respective sections. Data about the listed document types can be enriched by connecting them to other INDA supported entities, such as [**companies**](https://api.inda.ai/hr/docs/v2/#tag/Company-Management) and [**universities**](https://api.inda.ai/hr/docs/v2/#tag/Universities), so that recruiters may get a better and more detailed idea on the candidates' experiences and acquired skills. All the functionalities mentioned above are meant to help recruiters during the talent acquisition process, by exploiting the power of AI systems. Among the advantages a recruiter has by using this kind of systems, tackling the bias problem is surely one of the most relevant. Bias in recruitment is a serious issue that affect both recruiters and candidates, since it may cause wrong hiring decisions. As we care a lot about this problem, we are constantly working on reduce the bias in original data so that INDA results may be as fair as possible. As of now, in order to tackle the bias issue, INDA automatically ignores specific fields (such as name, gender, age and nationality) during the initial processing of each candidate data. Furthermore, we decided to let users collect data of various types, including personal or sensitive details, but we do not allow their usage if it is different from statistical purposes; our aim is to discourage recruiters from focusing on candidates' personal information, and to put their attention on the candidate's skills and abilities. We want to help recruiters to prevent any kind of bias while searching for the most valuable candidates they really need. The following documentation is addressed both to developers, in order to provide all technical details for INDA integration, and to managers, to guide them in the exploration of the implementation possibilities. The host of the API is [https://api.inda.ai/hr/v2/](https://api.inda.ai/hr/v2/). We recommend to check the API version and build (displayed near the documentation title). You can contact us at [email protected] in case of problems, suggestions, or particular needs. The search panel on the left can be used to navigate through the documentation and provides an overview of the API structure. On the right, you can find (*i*) the url of the method, (*ii*) an example of request body (if present), and (*iii*) an example of response for each response code. Finally, in the central section of each API method, you can find (*i*) a general description of the purpose of the method, (*ii*) details on parameters and request body schema (if present), and (*iii*) details on response schema, error models, and error codes.
samsin33/laravel-decision-engine
10 Downloads
This package provide support for making decision engine in laravel.
nathansalter/decision-pipeline
14 Downloads
Simple Middleware-type method of making decisions
johnpbloch/decisions
24 Downloads
Not Options
wellingtonbarbosa/knn
31 Downloads
A package to calculate Euclidean distance in a simple way, in addition to comparing results for recommendation quickly and symptomatically, without ifs.
bellangelo/phpadr
189 Downloads
A PHP based command-line interface tool for working with ADR
ayesh/composer-min-autoload
86 Downloads
A Composer plugin to generate slightly minimal Autoloaders with a new `dump-min-autoload` command
afrizalmy/fahp_dss
68 Downloads
Package sederhana untuk menghitung Sistem Pendukung Keputusan menggunakan metode Fuzzy AHP