Libraries tagged by NCAT
laragrad/identifier-validation
3702 Downloads
Extensions for Laravel validation rules to validate national person and company identifiers
kubuslab/webcore-php
286 Downloads
WebCore native wrapper library.
kore/njq
8 Downloads
Native PHP Job Queue
konstantin-kuklin/handlersocket-library
182 Downloads
HandlerSocket protocol wrapper on native PHP
jonnitto/prettyembedvideostreaming
981 Downloads
Prettier embeds for your native streaming videos in Neos CMS - with nice options like high-res preview images, lightbox feature, captions and advanced customization of embed options.
johnson/yii2-webcam
1944 Downloads
Capture and upload the image through system / Mobile web cam basic html5 native features.
joaosalless/dates
90 Downloads
Date library for identification of holidays or commemorative dates (national, state, municipal), automatic calculation of working days and office hours.
jinya/plates
4635 Downloads
Plates, the native PHP template system that's fast, easy to use and easy to extend.
iquety/security
2803 Downloads
Secure implementations for critical native functions
inkvizytor/zipper
3051 Downloads
This is a little neat helper for the ZipArchive methods with handy functions
inda-hr/php_sdk
876 Downloads
# Introduction **INDA (INtelligent Data Analysis)** is an [Intervieweb](https://www.intervieweb.it/hrm/) AI solution provided as a RESTful API. The INDA pricing model is *credits-based*, which means that a certain number of credits is associated to each API request. Hence, users have to purchase a certain amount of credits (established according to their needs) which will be reduced at each API call. INDA accepts and processes a user's request only if their credits quota is grater than - or, at least, equal to - the number of credits required by that request. To obtain further details on the pricing, please visit our [site](https://inda.ai) or contact us. INDA HR embraces a wide range of functionalities to manage the main elements of a recruitment process: + [**candidate**](https://api.inda.ai/hr/docs/v2/#tag/Resume-Management) (hereafter also referred to as **resume** or **applicant**), or rather a person looking for a job; + [**job advertisement**](https://api.inda.ai/hr/docs/v2/#tag/JobAd-Management) (hereafter also referred to as **job ad**), which is a document that collects all the main information and details about a job vacancy; + [**application**](https://api.inda.ai/hr/docs/v2/#tag/Application-Management), that binds candidates to job ads; it is generated whenever a candidate applies for a job. Each of them has a specific set of methods that grants users the ability to create, read, update and delete the relative documents, plus some special features based on AI approaches (such as *document parsing* or *semantic search*). They can be explored in their respective sections. Data about the listed document types can be enriched by connecting them to other INDA supported entities, such as [**companies**](https://api.inda.ai/hr/docs/v2/#tag/Company-Management) and [**universities**](https://api.inda.ai/hr/docs/v2/#tag/Universities), so that recruiters may get a better and more detailed idea on the candidates' experiences and acquired skills. All the functionalities mentioned above are meant to help recruiters during the talent acquisition process, by exploiting the power of AI systems. Among the advantages a recruiter has by using this kind of systems, tackling the bias problem is surely one of the most relevant. Bias in recruitment is a serious issue that affect both recruiters and candidates, since it may cause wrong hiring decisions. As we care a lot about this problem, we are constantly working on reduce the bias in original data so that INDA results may be as fair as possible. As of now, in order to tackle the bias issue, INDA automatically ignores specific fields (such as name, gender, age and nationality) during the initial processing of each candidate data. Furthermore, we decided to let users collect data of various types, including personal or sensitive details, but we do not allow their usage if it is different from statistical purposes; our aim is to discourage recruiters from focusing on candidates' personal information, and to put their attention on the candidate's skills and abilities. We want to help recruiters to prevent any kind of bias while searching for the most valuable candidates they really need. The following documentation is addressed both to developers, in order to provide all technical details for INDA integration, and to managers, to guide them in the exploration of the implementation possibilities. The host of the API is [https://api.inda.ai/hr/v2/](https://api.inda.ai/hr/v2/). We recommend to check the API version and build (displayed near the documentation title). You can contact us at [email protected] in case of problems, suggestions, or particular needs. The search panel on the left can be used to navigate through the documentation and provides an overview of the API structure. On the right, you can find (*i*) the url of the method, (*ii*) an example of request body (if present), and (*iii*) an example of response for each response code. Finally, in the central section of each API method, you can find (*i*) a general description of the purpose of the method, (*ii*) details on parameters and request body schema (if present), and (*iii*) details on response schema, error models, and error codes.
horde/nls
997 Downloads
Native language support library
hex-digital/sage-blade-block-renderer
2222 Downloads
Generate blade partials to render native gutenberg blocks with Sage 10
helingfeng/elasticsearch
7931 Downloads
Laravel, Lumen and Native php elasticseach query builder to build complex queries using an elegant syntax
hassanzohdy/mongez
2185 Downloads
A Robust application handler for building neat laravel application(s).