Libraries tagged by restfy
keyyo/manager-client
12890 Downloads
RESTful interface allowing you to query and configure settings for most Keyyo services
inda-hr/php_sdk
898 Downloads
# Introduction **INDA (INtelligent Data Analysis)** is an [Intervieweb](https://www.intervieweb.it/hrm/) AI solution provided as a RESTful API. The INDA pricing model is *credits-based*, which means that a certain number of credits is associated to each API request. Hence, users have to purchase a certain amount of credits (established according to their needs) which will be reduced at each API call. INDA accepts and processes a user's request only if their credits quota is grater than - or, at least, equal to - the number of credits required by that request. To obtain further details on the pricing, please visit our [site](https://inda.ai) or contact us. INDA HR embraces a wide range of functionalities to manage the main elements of a recruitment process: + [**candidate**](https://api.inda.ai/hr/docs/v2/#tag/Resume-Management) (hereafter also referred to as **resume** or **applicant**), or rather a person looking for a job; + [**job advertisement**](https://api.inda.ai/hr/docs/v2/#tag/JobAd-Management) (hereafter also referred to as **job ad**), which is a document that collects all the main information and details about a job vacancy; + [**application**](https://api.inda.ai/hr/docs/v2/#tag/Application-Management), that binds candidates to job ads; it is generated whenever a candidate applies for a job. Each of them has a specific set of methods that grants users the ability to create, read, update and delete the relative documents, plus some special features based on AI approaches (such as *document parsing* or *semantic search*). They can be explored in their respective sections. Data about the listed document types can be enriched by connecting them to other INDA supported entities, such as [**companies**](https://api.inda.ai/hr/docs/v2/#tag/Company-Management) and [**universities**](https://api.inda.ai/hr/docs/v2/#tag/Universities), so that recruiters may get a better and more detailed idea on the candidates' experiences and acquired skills. All the functionalities mentioned above are meant to help recruiters during the talent acquisition process, by exploiting the power of AI systems. Among the advantages a recruiter has by using this kind of systems, tackling the bias problem is surely one of the most relevant. Bias in recruitment is a serious issue that affect both recruiters and candidates, since it may cause wrong hiring decisions. As we care a lot about this problem, we are constantly working on reduce the bias in original data so that INDA results may be as fair as possible. As of now, in order to tackle the bias issue, INDA automatically ignores specific fields (such as name, gender, age and nationality) during the initial processing of each candidate data. Furthermore, we decided to let users collect data of various types, including personal or sensitive details, but we do not allow their usage if it is different from statistical purposes; our aim is to discourage recruiters from focusing on candidates' personal information, and to put their attention on the candidate's skills and abilities. We want to help recruiters to prevent any kind of bias while searching for the most valuable candidates they really need. The following documentation is addressed both to developers, in order to provide all technical details for INDA integration, and to managers, to guide them in the exploration of the implementation possibilities. The host of the API is [https://api.inda.ai/hr/v2/](https://api.inda.ai/hr/v2/). We recommend to check the API version and build (displayed near the documentation title). You can contact us at [email protected] in case of problems, suggestions, or particular needs. The search panel on the left can be used to navigate through the documentation and provides an overview of the API structure. On the right, you can find (*i*) the url of the method, (*ii*) an example of request body (if present), and (*iii*) an example of response for each response code. Finally, in the central section of each API method, you can find (*i*) a general description of the purpose of the method, (*ii*) details on parameters and request body schema (if present), and (*iii*) details on response schema, error models, and error codes.
iafilin/eloquenthttpadapter
93 Downloads
EloquentHttpAdapter is a Laravel package that allows you to work with RESTful API data using an Eloquent-like syntax with HttpModel abstract class, interfaces, and custom exceptions.
haziqzahari/lara-micro-rest
2043 Downloads
RESTful API Handlers to consume responses and forward requests in microservices.
gregurco/guzzle-bundle-wsse-plugin
29554 Downloads
WSSE Plugin for Guzzle Bundle, a PHP HTTP client library and framework for building RESTful web service clients
flintstones/rest
72 Downloads
Adding some REST capabilities to Silex, so you can more easily build RESTful APIs. 110% Buzzword-Driven.
fizzday/fizzjwt
463 Downloads
A simple library to encode and decode JSON Web Tokens (JWT) in PHP, based on 'firebase/jwt', add the decode() third param default 'HS256'(JWT 无状态 restful api 认证)
fizk/library
581 Downloads
A RESTfull API utility classes
firevel/api
2807 Downloads
A Laravel package offering base classes for efficient RESTful API development.
fadugyamfi/laravel-api-base
10936 Downloads
Laravel Package for easy RESTful API development
cnsdose/salesforce-php
807 Downloads
Salesforce RESTful client
chalarangelo/codeigniter-rap
952 Downloads
Simple RESTful API boilerplate for the CodeIgniter framework
carbonorm/carbonphp
782 Downloads
A PHP 8.1+ tool kit featuring RESTFUL ORM, sockets, session management, and routing.
bekodesign/versio-php-api
1631 Downloads
PHP implementation of the new Restfull Versio API
antavo/rest-client
47974 Downloads
A rather straightforward and lightweight, yet flexible helper class to perform operations on a RESTful API with cURL